A generalized polynomial chaos based ensemble Kalman filter with high accuracy

نویسندگان

  • Jia Li
  • Dongbin Xiu
چکیده

As one of the most adopted sequential data assimilation methods in many areas, especially those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been under extensive investigation regarding its properties and efficiency. Compared to other variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs random ensembles to represent solution states. This, however, introduces sampling errors that affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number of samples, in practice this is undesirable as each ensemble member is a solution of the system of state equations and can be time consuming to compute for large-scale problems. In this paper we present an efficient EnKF implementation via generalized polynomial chaos (gPC) expansion. The key ingredients of the proposed approach involve (1) solving the system of stochastic state equations via the gPC methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic solution with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF. Numerical examples are provided to verify the convergence property and accuracy improvement of the new algorithm. We also prove that for linear systems with Gaussian noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Methods for Date Assimilation – a Survey

As a result of the lack of the knowledge with regard to the statistical properties of the dynamic models and operational observations, as well as the computational burden related to the high dimensionality of the realistic data assimilation problems especially those complex nonlinear filtering problems, the ensemble Kalman filter scheme has been paid much more attention in recent years and has ...

متن کامل

Towards predictive simulation of wildfire spread using a reduced-cost Ensemble Kalman Filter based on Polynomial Chaos approximation

The sequential correction of a fire spread model parameters is performed via the assimilation of airborne-like fire front observations in order to improve the simulation and forecast of the fire propagation. An Ensemble Kalman Filter (EnKF) is applied to reduce uncertainties in the atmospheric and vegetation parameters for the Rate Of Spread (ROS) model. The non-linear relation between the para...

متن کامل

An accuracy comparison of polynomial chaos type methods for the propagation of uncertainties

In (Augustin et al. in European J. Appl. Math. 19:149-190, 2008) we considered the Polynomial Chaos Expansion for the treatment of uncertainties in industrial applications. For many applications the method has been proven to be a computationally superior alternative to Monte Carlo evaluations. In the current overview we compare the accuracy of Polynomial Chaos type methods for the propagation o...

متن کامل

Nonlinear Estimation in Polynomial Chaos Framework

In this paper we present two nonlinear estimation algorithms that combine generalized polynomial chaos theory with higher moment updates and Bayesian framework. Polynomial chaos theory is used to predict the evolution of uncertainty of the nonlinear random process. In the first estimation algorithm, higher order moment updates are used to estimate the posterior non Gaussian probability density ...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009